RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2018 SECOND YEAR [BATCH 2017-20] MATHEMATICS [General]

Date : 22/12/2018 Time : 11 am – 2 pm

Paper : III

Full Marks : 75

[5]

[5]

[5]

[5]

[5]

[Use a separate Answer Book for each Group]

- 1. Perpendiculars *PL*, *PM*, *PN* are drawn from the point *P*(*a*, *b*, *c*) on the coordinate planes. Show that the equation of the plane *LMN* is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$.
- 2. Find the equation of the plane whose *x*-intercept is 3 unit and which passes through the points (2,-1,3) and (3,-2,5).
- 3. Find the image of the point (-3,5,2) in the plane 2x y + z = 0.
- 4. Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y+1}{4} = \frac{z+4}{5}$ and $\frac{x-7}{2} = \frac{y-4}{3} = \frac{z-3}{4}$. [5]
- 5. Find the greatest and the least distances of the point (2,-1,3) from the sphere $x^2 + y^2 + z^2 2x 2y 4z + 2 = 0$. [3+2]
- 6. Find the equation of the right circular cone whose vertex is the origin, axis is the y-axis and semi vertical angle is 60° .

<u>Group – B</u> (Answer <u>any four</u> questions) [4×10]

- 7. a) Food X contains 6 units of vitamin A and 7 units of vitamin B per gram and costs Rs. 12/gm. Food Y contains 8 units and 15 units of A and B per gram respectively and costs Rs. 22/gm. The daily requirements of vitamin A and B are at least 80 units and 100 units respectively. Formulate the above as an L.P.P. to minimize the cost.
 - b) Put the following problem in a standard maximization form:

Minimize
$$z = 3x_1 - 4x_2 - x_3$$

Subject to $x_1 + 3x_2 - 4x_3 \le 12$
 $x_1 + x_2 - 2x_3 \le 20$
 $x_1 - 4x_2 - 5x_3 \ge 5$
 $x_1 \ge 0, x_2, x_3$ are unrestricted in sign.

8. a) Solve the following L.P.P. graphically:

Maximize
$$z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 2$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$
[6]

b) Find all the basic solutions of the following equations:

$$x_{1} + x_{2} + x_{3} = 4$$

$$2x_{1} + 5x_{2} - 2x_{3} = 3$$

n of them are feasible if $x_{1}, x_{2}, x_{3} \ge 0$? [3+1]

Which of them are feasible if $x_1, x_2, x_3 \ge 0$?

- a) Prove that the set of all feasible solutions of a linear programming problem is a convex set. [3]
- b) Use Charnes Big-M method to solve the following L.P.P.

Maximize
$$z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \ge 2$
 $x_1 + 3x_2 \le 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

10. a) Reduce the feasible solution $x_1 = 2, x_2 = 1, x_3 = 1$ of the system of equations:

$$x_1 + 4x_2 - x_3 = 5$$

9.

$$x_1 + 4x_2 - x_3 = 3$$
$$2x_1 + 3x_2 + x_3 = 8$$

to two basic feasible solutions.

- b) Prove that in \mathbb{R}^2 , the set given by $X = \{(x_1, x_2) | 9x_1^2 + 4x_2^2 \le 36\}$ is a convex set. [4]
- Prove that the dual of the dual is the primal. 11. a)
 - Obtain the optimal basic feasible solution of the following transportation problem (Use VAM b) to find initial BFS)

	D_1	D_2	D_3	D_4	
O_1	23	27	16	18	30
O_2	12	17	20	51	40
O ₃	22	28	12	32	53
	22	35	25	41	•

Find the optimal assignments to find the minimum cost for the assignment problem with the 12. a) following cost matrix: [5]

	M_1	M_2	M_3	M_4
\mathbf{J}_1	10	24	30	15
\mathbf{J}_2	16	22	28	12
J_3	12	20	32	10
\mathbf{J}_4	9	26	34	16

b) Find the dual of the following primal problem:

Minimize
$$z = 4x_1 + 5x_2 - 3x_3$$

Subject to : $x_1 + x_2 + x_3 = 22$
 $3x_1 + 5x_2 - 2x_3 \le 65$
 $x_1 + 7x_2 + 4x_3 \ge 120$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted

[5]

[7]

[6]

[4]

[6]

13. a) Obtain initial basic feasible solution of the following transportation problem by matrix minima method:

	А	В	С	aj
O_1	10	9	8	8
O ₂	10	7	10	7
$\tilde{O_3}$	11	9	7	9
O_4	12	14	10	4
bj	10	10	8	

b) Using simplex method, show that the following L.P.P. has unbounded solution: Maximize $z = 2x_1 + 3x_2 + x_3$

subject to $-3x_1 + 2x_2 + 3x_3 = 8$ $-3x_1 + 4x_2 + 2x_3 = 7$

$$x_1, x_2, x_3 \ge 0$$

<u>Group – C</u> (Answer <u>any three</u> questions) [3×5]

- 14. a) Round off the following numbers to three significant figures: [3] 0.01201, -239.85, 0.004923
 b) Taking π = 3.14 instead of 3.14156, find the absolute error and the relative error. [2]
- 15. Values of *x* (in degrees) and Sin *x* are given in the following table:

x (in degrees)	Sin <i>x</i>
15	0.2588190
20	0.3420201
25	0.4226183
30	0.5
35	0.5735764
40	0.6427876

Determine the value of Sin 38° by taking suitable interpolation polynomial formula.

16. Find the Lagrangian interpolating polynomial of degree 2 approximating the function $y = \ln x$ defined by the following table of values. Hence determine the value of ln 2.7. [5]

x	$y = \ln x$
2	0.69315
2.5	0.91629
3.0	1.09861

17. Using Trapezoidal rule, calculate the value of the integral $\int_{0}^{1} \frac{dx}{1+x}$ taking four sub-intervals, correct up to five decimal places.

18. Compute by Newton-Raphson method a positive root of the equation $x^3 - 9x + 1 = 0$, correct upto three significant figures. [5]

(3)

[5]

[5]

[4]

[6]